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The elliptical billiard problem defines a two-dimensional integrable discrete 
dynamical system, lntegrability not being a robust property, we study some 
static and time-dependent perturbations of this problem. For the static case, we 
observe the transition from integrability to chaos, on some perturbations of 
the ellipse. Then we study time-dependent perturbations, supposing that the 
boundary deforms periodically with the time, remaining always an ellipse. We 
investigate numerically the now four-dimensional phase space, looking mainly 
at the question of whether or not the velocity of a given trajectory may increase 
indefinitely. 

KEY WORDS:  Classical elliptical billiard; static and time-dependent pertur- 
bations. 

1. THE CLASSICAL ELLIPTICAL BILLIARD 

The classical elliptical billiard problem consists in the study of the free 
motion of a point particle inside the plane region bounded by an ellipse, 
being reflected elastically at the impacts with the boundary. 
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One of the possible ways to construct a mathematical model for this 
problem is to define an ellipse, in Cartesian coordinates, by f ( x , y ) =  
x2/a 2 + y 2 =  1, a > 1, and a Lagrangian system L - - T - V  by 

T ( x ' , y ' ) = l "  , , -  , , ,  ~tx --~ y "1 

V(x, y ) =  N--~lim [ f ( x '  y ) ] N =  {O~ 
inside the ellipse 

outside the ellipse 

Suppose that the particle leaves the ellipse from qo = (x(coo), Y(COo)) with 
velocity v o. It will then ove with constant velocity on a straight line until 
it reaches the ellipse again at q l = (x(CO 1 ), Y(CO, )), with incoming velocity Vo 
and outgoing velocity v,. Since the system is Lagrangian, the conservation 
of energy and momentum give that v~ = V o - 2 ( V o ,  n~) nj, where n~ is the 
unitary external normal vector at qt and IIv,II = IlvolP. We can take Ilvill = 1 
and then v~ is defined by the angle s i it makes with the unitary tangent 
vector. 

Since the ellipse is a Jordan curve, f ( x ,  y ) =  1 constitutes a section, 
transverse to the flow defined by the Lagrangian L. Let us take the angle 
CO between the x axis and the oriented tangent to the ellipse as a parameter. 

The billiard map T is defined on the phase space d = [0, 2~z) x (0, zr), 
with coordinates CO and s. Given an initial condition (COo, SoL (CO,, s~)=  
T(COo, Cto) is given by 

f(qo + Vo/) = 1, i > 0  

ql =qo+Vo / 

oq = Col - (Coo + So) 

where Vo = (cos(Coo + So), sin(Coo + So)). 
As the ellipse is C ~, the map T: ~r ~ ~ '  is a C~-diffeomorphism, 

preserving the area d~t = R sin c~ ds dCo, where R(Co) = a2/(a 2 sin 2 Co + 
cos'-Co)3/2 is the radius of curvature at (x(Co), y(Co)). 

Its derivative is 

1 ( lol - Ro sin 0% lol '~ 
DT~~176176 t s ins  I _ l o l - R o s i n s o - R  I sinoq lo l - -Rl  s i n s l /  

where loj is the distance between qo and ql, and Ri=R(COi), i = 0 ,  1. 
This billiard system is integrable. The function 

,) ~1 ,)  

c o s -  s - -  e -  c o s -  CO 

F( CO, o~ ) = 1 - e 2 cos: CO 
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Fig. 1. Conical caustics. 

where e = ( a - ' -  1 )~/2/a is the eccentricity of the ellipse, is a first integral for 
T, i.e., F is constant on the orbits under T. (Actually, Birkhoff conjectured 
that the only convex integrable billiard is the ellipse.) 

Physically, F may be interpreted as the product of the angular 
momenta about the two foci. c2~ This product is conserved along a trajec- 
tory since the movement is uniform between two impacts, there is a reflec- 
tion at the ellipse, and the focal radii make equal angles with the tangent 
to the ellipse. 

Geometrically, F(cpo, %) has a very special meaning. It is well known 
(see, for instance, ref. 22) that each trajectory of the elliptical billiard has, 
on the configuration space, a conical caustic, confocal with the ellipse 
(Fig. 1). 

If a segment of a given trajectory cuts the segment joining the two foci, 
all the other segments of this trajectory will cut it and the caustic will be 
a hyperbola. If it passes by one focus, the trajectory will always pass by the 
foci, thus having the two foci as a degenerate caustic. Otherwise, the caustic 
will be an ellipse. The number IF(q~0, %)1 ~/2 measures the length of the 
minor axis of the conical caustic. 

Fig. 2. Phase space of the elliptical billiard. 
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So, for every a > 1, the phase space d is foliated by the level curves 
of F (Fig. 2). 

The orbits over F =  k > 0 correspond to the trajectories with elliptical 
caustic. The trajectories over the major axis correspond to two hyperbolic 
2-periodic orbits, with F =  0. They are connected by an invariant curve, 
corresponding to the trajectories that pass by the foci. It is a saddle connec- 
tion and its level curve is F =  0. The trajectories over the minor axis are, 
on the phase space, the two elliptic 2-periodic orbits, with F =  1 - a  2 
(except for a = v/2, when they are parabolic). They are encircled by the 
curves F =  k, 1 -a -"  < k  < 0, corresponding to the trajectories with hyper- 
bolic caustic. 

One of Poncelet's theorems on projective geometry (see, for instance, 
ref. 1 ) states that if, given two conics, there is a polygon having its vertices 
on one conic and sides tangent to the other, than there are infinitely many 
polygons with this same property. They all have the same number of sides 
and their vertices are ordered in the same way. This theorem can be trans- 
lated, in the case of the elliptical billiard, stating that there are infinitely 
many trajectories sharing the same caustic and with the same dynamical 
behavior. On the phase space d ,  this means that if a given orbit is peri- 
odic, all the other orbits on the same integral curve are also periodic, with 
the same period. If it is not periodic, the same will be true for all the orbits 
on the same integral curve. Also, on each integral curve, the points of 
the orbits are ordered in the same way. (For  more information about 
Poncelet's theorem and billiards, see, for instance, refs. 5 and 23.) 

To each integral curve F =  k, or equivalently, to each conical caustic, 
is associated a rotation number. 

�9 To k > 0 is associated a rotation number p(k)  such that: 

1. 0 < p < l .  

2. p = n / p  e Q, (n,p)---1, corresponds to periodic orbits of period 
p, and TP(q%, ~0) = (~00 + 2nrc, ~0) = (CPo, ~ 

3. p �9 R \Q corresponds to dense orbits (dense on the level curve). 

�9 T o  1 - a 2 <  k < 0 is associated a rotation number r(k) such that: 

1. v(a) < r < 1, where 

1 
1 + -  arctan 

v(a) = 1/2 

1 2 x /a-"  - 1 
- arctan 
7~ a 2 - - 2  

2 x / ~ -  1 
a2- -2  if 1 < a  < x / ~  

if a = x / ~  

if v / 2 < a  
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2. r=n/pe Q, (n,p)---1, corresponds to periodic orbits of period 
2p, crossing 2n times the minor axis of the ellipse. 

3. r e R \ Q  corresponds to dense orbits (dense on the level curve). 

To define the function v(a) we use that (0, n/2) and (n, n/2) are elliptic 
(or parabolic) fixed points of T'-, with eigenvalues 

_ +2  a,,/r~-2-- 1 
2j  =- e 2ravita), where vj(a) = 1 arctan - j =  1, 2 

r~ 2 - a  2 ' 

Notice that v(a) is strictly decreasing, v(a) --+ 1 as a --+ 1 +, and v(a) --+ 0 + as 
a-+ +oo. This indicates another difference between trajectories with ellipti- 
cal caustic and those with hyperbolic caustic: for each a > 1, we have peri- 
odic orbits of every period with elliptical caustic, but not with hyperbolic 
caustic. First of all, the last ones have always even period. But, since ~ = 
n/p> v(a), not all rotation numbers 3, and then not all periods, exist for 
every a. For  instance, orbits of period 4 exist only for a > ,r and there 
is no period-8 orbit if a < ( 4 - 2 x / / 2 )  ~/'-. Figure3 shows the bifurcation 
diagram for periodic orbits with hyperbolic caustic. 

The fundamental structure of the phase space as displayed in Fig. 2 is 
invariant under scalings of the ellipse; in other words, it is the same for 
ellipses having the same eccentricity. However, as one can learn from the 
bifurcation diagram of Fig. 3, for different values of the eccentricity, the fine 
structure of the phase space around the elliptic 2-periodic points is quite 
different. 

period 8 
r = 1/4 

f -- 1/3 

I I I I I ~ .  

Fig. 3. Diagram of bifurcation of periodic orbits with hyperbolic caustic. 
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2. STATIC P E R T U R B A T I O N S  OF THE ELLIPTICAL BILLIARD 

Integrability, however, is not a robust property. KAM theory says that 
generic perturbations of the elliptical boundary will imply nonintegrability 
and the appearance of (perhaps very thin) chaotic zones on the phase space 
of the perturbed billiard. Many people have studied particular examples of 
these phenomena, getting explicit conditions for the transversality when the 
saddle connection is broken. Levallois and Tabanov, 114"241 for instance, 
have showed the nonintegrability for some one-parameter global symmetric 
perturbations (analytical and algebraic) of the ellipse, like the family 

x 2 y2 ( .~  X4)(X 4 X6) 
--~+ = 1 + 2 e  - -  +e  2 c-7 a- V-" 7 7 -  

Levallois, ('3) following Donnay, also studied local perturbations of the 
ellipse in the neighborhood of a point, changing the curvature but not the 
tangent at this point. And this problem is still nonintegrable. 

Nevertheless, the structure of the phase space of the elliptical billiard 
is very strong. It is not so easy to go from absolute order (integrability) to 
total disorder (ergodicity). This can be seen in another example: the ellipti- 
cal stadium. 

The boundary of the elliptical stadium is constructed by joining two 
half-ellipses, with half-axes a > 1 and b = 1, by two segments of equal 
length 2h (Fig. 4). 

The elliptical stadium billiard map is a homeomorphism, piecewise 
C ~. It has two hyperbolic 2-periodic orbits (corresponding to the trajec- 
tories on the direction of the major axes of the half-ellipses), but the elliptic 
2-periodic orbits of the elliptical billiard become an entire segment of 
2-periodic points. 

Canale and Markarian 14) proved the existence of symmetric periodic 
orbits for the elliptical stadium, of every even period, for every 1 < a < x/~ 
and h > 0 [ they have the same shape as the periodic orbits with hyperbolic 

2h 

Fig. 4. Elliptical stadium. 
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)(  ) 
Fig. 5. Symmetric periodic orbits on the elliptical stadium. 

caustic of the elliptical billiard, with period 217 and rotation number 
r =  ( n -  1)/n] (see Figs. 3 and 5). 

They pointed out that, for 1 < a < x/~, the 4-periodic orbit is elliptic 
if h < (a 2 - 1 )1/2 and is hyperbolic if h > (a 2 - 1 )1/2. The numerical simula- 
tions they carried out show that, while this 4-periodic orbit is elliptic, it is 
encircled by elliptic islands of positive measure (Fig. 6) and, fixing a < x/~ 
and increasing h, those elliptic islands seem to be the last ones to disap- 
pear, among all those that can be observed, at least for small values ofh. 

Also, some numerical simulations we have carried out show that 
Va > 1 and Vh > 0, initial conditions near the boundary of the phase space 
(0~=0 or e=rc),  after a finite number of iterations, come near the other 
boundary (~ = rc or e = 0), showing the existence of what Mather 12~ called 
glancing orbits, i.e., trajectories that change orientation in relation to the 
orientation of the boundary of the billiard. This indicates the existence of 
an invariant region that mixes up two invariant regions of the elliptical 
billiard. This phenomenon could be caused by the rupture of the saddle 
connection. Actually, the numerical simulations show that the invariant 
manifolds of the 2-periodic hyperbolic orbits of the elliptical stadium cross 
transversally and the problem is noninte?grable (Fig. 7). 

Donnay 161 showed that if 1 < a < x/2 and if h is sufficiently large, then 
the elliptical stadium map has nonvanishing Lyapunov exponents almost 
everywhere, meaning sensitive dependence on initial conditions. 

Markarian etal. ~19~ proved that if a < ( 4 - 2 x / ~ )  1/-~, then Vh> 
2a2(a ~-- 1 )1/2, the elliptical stadium map is ergodic and has the K-property. 

The proof of this result is based on the construction of a measurable 
eventually strictly invariant cone field on the phase space of the billiard 
map. Applying Wojtkowski's theorem, ~25~ it follows that for those values of 

Fig. 6. Elliptical islands for a = 1.07 and h = 0.05. 
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Fig. 7. 32,000 points of a unique orbit and tile unstable manifold for a = 1.07 and h = 0.05. 

a and h, the Lyapunov exponents are nonvanishing almost everywhere. We 
use the results of Liverani and Wojtkowski (ref. 17, w which assures 
ergodicity and, for instance, the results of Markarian (see ref. 18, Section 4) 
to prove that it is a K-system. 

So we have to go "far" from the ellipse to have ergodicity if a < ~/2_. 
And if a > x/~, Bunimovich ~31 conjectured that the elliptical stadium is not 
mixing. The numerical simulations suggest that, even for very big values of 
h, there are elliptic islands of positive measure that remain. 

The persistence of the structure around the elliptic 2-periodic orbits 
(along the minor axis) can also be seen in a different stadium, proposed by 
Wojtkowski. ~ The ellipse is cut along the major axis and the two pieces 
are joined by straight segments of length 2h. Two interior segments join the 
foci of the resulting half-ellipses (Fig. 8). 

If h < a 2 -  1, there are elliptic islands of positive measure surrounding 
the elliptic 2-periodic points. If h > a 2 -  1, these islands disappear, giving 
rise to a Pesin component with nonvanishing Lyapunov exponents. In any 
case, independently of the value of h, two invariant regions with positive 
Lyapunov exponent exist, corresponding to orbits with elliptical caustic in 
the nonperturbed case. Then, if h > a  2 -  1, the phase space is neither 
integrable nor ergodic, but is decomposed into at least three ergodic com- 
ponents of positive measure. ~81 

Fig. 8. Wojtkowski's stadium. 
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3. T IME-DEPENDENT PERTURBATIONS OF THE 
ELLIPTICAL BILLIARD 

In this section, instead of studying a perturbation of the elliptical 
boundary, we are going to suppose that the ellipse deforms periodically 
with the time, remaining always an ellipse. A more detailed description of 
time-dependent billiards is given in refs. 8 and 9. 

Billiards whose boundaries may deform are used as models in different 
branches of physics. The fundamental questions on this problem are 
whether a particle can reach unbounded velocities or whether a periodic 
motion of the boundary can give rise to random motions of the particle. 
The one-dimensional moving billiard problem, known as the Fermi 
accelerator, has been widely studied. A description of this and related one- 
dimensional models, as well as numerical results, may be found in the book 
by Lichtenberg and Liebermann ~ ~61 and in the references therein. Analytical 
results, also in dimension one, were proved by Pustyl'nikov,~-'~ Douady]  71 
and Kriiger e t alJ J o~ Soft time-dependent billiards were studied by Levi 1~51 
and Laederich and LeviJ~2~ Kutz and Zorn r studied numerically a rotat- 
ing square billiard, through the adiabatic invariant. 

We will suppose that, for every instant t, the elliptical boundary is 
given byf lx ,  y, t)= x'-/a(t) 2 +y'-/b(t) 2= 1, where a and b are periodic func- 
tions of t, with commensurable periods. 

Clearly, the billiard problem still has elastic collisions, but no reflec- 
tions, since we have to take into account the normal velocity of the boundary 
at the impacts. 

To build a mathematical model for this problem, let us take coor- 
dinates (x,y,  z) on ~3 and define the one-parameter Lagrangian system 
L~, = T r - V, where 

T~,(x,,y,,z,)=l ( 1 ) X'2 -{- Y t2 - ~ ' - -  fit2 

7- 

V(x,y ,z)= lim [ f (x ,y , z )]  u 
N ~ ea'z 

inside the tube ( f <  1 ) 
outside the tube ( f >  1 ) 

We thus have a rigid billiard on It~ 3, inside the tube f <  1, whose trajectories 
are the geodesics of the metric given by T~,. When 7 goes to zero, those 
geodesics become straight lines and the solutions of this augmented billiard 
that have z'= 1 will project over those of the plane moving boundary 
billiard. 
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To see that they are well defined as a class of solutions, remark first 
that the equations of motion are 

(x", y") = -gradlx,;. I V(x, y, z) 

z" = _~2 0 V/Oz 

Since the functions a and b are periodic, Of/Oz is bounded and so is 0 V/Oz. 
Then, when y ~ 0, z"--, 0. Choosing initial conditions z ' =  1 and z - -0 ,  
z(t) ~ t when y ~ 0, or z is a "timelike" variable. 

Suppose that a particle leaves the boundary f =  1 with velocity 
Wo(y)=(ao, bo, Co) and hits the boundary again. The outgoing velocity 
after the impact is w, (y)=Wo(y)-2<w0(y) ,n .>~,n , ,  where < ,  >y is the 
inner product inherited from T~, and n~ is the unitary external normal 
vector with this inner product. 

When Co= 1, l im~,_0Wl(y)=(a t ,b l ,  1), or {z '=  1} is an invariant 
section transverse to the flow defined by the Lagrangian, when y--* 0. 

Consider now the time-dependent billiard whose boundary at time t is 
given by the ellipse C ( t ) = { f ( x , y , t ) = l } .  Suppose that the particle 
leaves the boundary C(to) from the point qo with velocity % =  (ao, bo). It 
reaches the boundary again at some future time tl at a point ql ~ C(tl) with 
outgoing velocity v~ =(a~,  bl). If we look at the moving boundary as a 
surface in the (x, y, t) space, the trajectory of the particle at each instant 
will have velocity w=(2,)~,  1). So the billiard map changes an initial 
condition qo=(qo,  to) with Wo=(ao, b o, 1) into qj = ( q , ,  tt) with w l = 

(a,,bi, 1). 
It is easy to see that 

-OJTOt (qi, til u, = [ ( Of/Ox ) "- + ( Of/Oy ) 2 ] ,/2 

is the normal velocity of the curve C(ti) at q;. Simple calculations show 
that, as y ~ O ,  w ~ = ( a ~ , b ~ , l ) = ( a o ,  bo, 1 ) -2u~r l , ,  where rl, is the 
exterior normal vector of C(&) at qv So, to calculate the next impact, all 
we have to know are to, qo, and v 0. 

Since for each t, C(t )=  { f ( x , y ,  t ) =  1} is an ellipse, we parametrize it 
by the angle ~o, as before. Working now on the plane, suppose that the par- 
ticle leaves q = (x(qO, y(cp)) e C(t) with velocity v = (a, b). At q we have the 
orthonormal frame z = ( c o s  r sin ~p), the unitary tangent vector to C(t), 
and q = (sin q~, - c o s  ~o), the unitary exterior normal vector. In this frame 
v = (a, b) = v cos ~ x - v sin ~ 11, v = [Ivll = (0 2 +b2) v2. So, to give an initial 
condition we must give ~Po, s0, Vo, and to. The next impact (q~, cq, v,, t~) 
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Fig. 9. Coordinates for the time-dependent billiard. 

will be given by the formulas (obtained via elementary geometry and con- 
servation of energy and momentum) 

f ( q o + ( t l - t o )  vo, t l ) =  1 

~Oo+~0- q~l + ~ * - 0  (mod 2~) 

Z) 1COS~ 1 ~ I ) 0  COS CX ~ 

v I sin ~l = Vo sin 0~* - 2 u  t 

The angle ~z* is measured in the following way: the particle hits the bound- 
ary again at t =  t~ with velocity v o. In the new frame (*l, q~) this vector is 
written v o = Vo cos cz*x I + v o sin ~*rll (Fig. 9). 

Unfortunately, not all (<Po, c%, Vo, to) are admissible initial conditions. 
The movement must occur inside the region bounded by the deforming 
ellipse, or, analogously, inside the tube f~< 1, on R 3. Calling ? the unitary 
vector in the t direction, we must ask that the outgoing velocity vector 
Vo+t  point inward, or equivalently, (Vo+~,Vf,~o,,ol) is negative, or 
v o sin 0~ o + u o > 0. 

Let us call ~ = { ( ~ o  o , % , v o , t o )  s.t. vos inc%+Uo>0} the set of the 
admissible initial conditions and T the map that to each (q~o, So, Vo, to)e 
associates the next impact (91, c~l, vl, tl). 

I f f  is C k, k >/2, and avoiding a measure zero set of singularities, then 
T: . ~ . ~  is a Ck-Z-diffeomorphism that preserves the volume dv= 
Rv(v sin oL + u,) d9 do~ dv dt, where R is the radius of curvature of the ellipse 
C(t) atq~. 

The 4 • 4 Jacobian DT is composed of four 2 x 2 blocks A, B, C, and 
D, disposed as (~- ~). 

The "geometrical block" 

=(C11 C12) 
A \C2j C,_2/ 
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corresponding to the (~p, 0~) coordinates may be written as 

/Ol Ro sin ~x o 
Cll +utCO(1) 

Rl sin 0c~' Rl sin ~* 

/Ol Cl2-- ~ + ul (-0(1) 

sin , (,o -,'osin o-R, Ou 
C o , -  . +u~(.0(l)+ (9(1)+&p~ d~(1) 

" sm 0c i R l sin ~* 

sin o~* /lo~ - Rl sin o~*'x ~ 
C"2= sin 0r I ~ ~ ~ n ~  ") +u1(9(1)+ (9(I)+ (9(1) 

where lot =Vo(to-tl) and R,- is the radius of curvature of C(ti) at cpi, 
i =  1, 2. As oc* =oq, ut =OuJOt~ =aud&p~ = 0  in the rigid case, the (~p, 0c) 
block can be looked at as a perturbation of the rigid case. 

What is surprising on this moving billiard map is that, in contrast to 
the rigid case, the angle 0 t e [ - n , n ) .  This can be seen, physically, for 
instance, if we suppose that Ul > 0 (the boundary is moving outward) and 
the particle arrives with a normal incoming velocity Vo sin ~* such that 
2Ul>VoSino~*>ul>O. Then, 0 > v ~ s i n 0 q > - - u ~  and 0 q ~ [ - n ,  0). The 
particle hits the boundary and continues inside the billiard region, but out- 
side C(t~). It does not rebound, but the boundary moves faster, in the 
normal direction. 

The set of admissible initial conditions ~ is thus contained in the 
cylinder [0, 2n) x [ - n ,  n) x (0, +oo) x [0, P), where P is the common 
period of a(t) and b(t). 

Fig. 10. Geometrical phase space for the breathing circle for ao = 1.3 and a o = 1.1. 
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Using this billiard diffeomorphism, we studied numerically some time- 
dependent ellipses, given by 

x 2 y2 
f (x ,y ,  t) = a - - ~  + b - - ~  = 1 with a(t)=ao+eCOSOgt 

In this paper  we will present (i) the breathing circle, where b(t)= a(t), 
(ii) the confocal motion, where a2(t) - b2(t) " 2 = a~ - b0, (iii) the dipole, where 
b(t)=bo, and (iv) the quadrupole, where b(t)=bo-eCOS(COt), for a few 
values of ao and bo, fixing e=0 .1  and co= 1. 

In each example, we investigate the consequences of the time-dependent 
perturbation on the phase space of the elliptical billiard [corresponding to 
the (~p, ~) coordinates on the four-dimensional phase space of the moving 
ellipse] and the time evolution of the velocity. 

Note that in all the examples above and for each t the boundary is 
either an ellipse centered at the origin, with half-axis changing in size, but 
staying always along the x and y directions, or a circle centered at the 
origin. To each one of these curves is associated a billiard with its two- 
dimensional phase space. The fundamental structure of these phase spaces 
for the ellipses is described in Section 1 and displayed in Fig. 2. The phase 
space of the circular billiard is just foliated by horizontal invariant lines. 

Figures 10-13 present "geometrical" phase spaces (the ~o x ~ diagrams) 
for different values of the initial velocity v0. For  each Vo we take a few 
initial values of ~Po and e0, fixing to = 0. 

Figure 10 shows the geometrical phase space for the breathing circle, 
with a 0 = 1.3 and a0 = 1.1. It is clear that the structure of the static circular 
billiard phase space is maintained and that the results do not depend on a 0. 

Figure 11 shows the geometrical phase space for the confocal motion 
with ao = 1.3, b 0 = 1.0 and a o = 1.1, bo = 1.0. For  every ao, the fundamental 

Fig. 11. Geometrical phase space for the confocal motion for ao = 1.3, b0 = 1.0 and ao = 1.1, 
bo = 1.0. 
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Fig. 12. Geometrical phase space for the dipole and the quadrupole for a o = 1.3, b o = 1.0. 

structure of phase space of the static elliptical billiard is present, but the 
map is clearly nonintegrable. 

In the breathing circle as in the confocal motion, the greater the 
velocity, the more similar to the static case is the q~ x ~ diagram. For  small 
values of the velocity, it appears more disordered, looking like a perturba- 
tion of the geometrical phase space for large values of the velocity. 

Figure 12 displays the geometrical phase space for the dipole and the 
quadrupole, with ao = 1.3, bo = 1.0. Here we still find the fundamental 
structure of the static elliptical billiard and the nonintegrability. Note that 
for this choice of ao and b0 the major  axis of each ellipse is always on the 
x axis and the minor one on the y axis, and so the global structure of 
the phase space of each instantaneous ellipse is the same; in particular, the 
stability of the 2-periodic orbits on the diameters is unchanged. 

A quite different situation appears when ao = 1.1 and b0 = 1.0, for the 
dipole and the quadrupole. Here the instantaneous ellipse degenerates into 

Fig. 13. Geometrical phase space for the degenerate dipole and the degenerate quadrupole 
for ao = 1.1, b 0 = 1.0. 
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(a) (b) (,:) 

Behavior of an orbit with initial condition near (a) the boundary, (b) the elliptic 
periodic orbit, and (c) the broken saddle connection, for Vo = 1. 

a circle. The corresponding geometrical phase spaces look more like a perturba- 
tion of the circular billiard than of the elliptical one, as shown in Fig. 1 3. 

For  these degenerate dipole and quadrupole, as the half-axes are inter- 
changed, the geometrical phase space is like an overlap of elliptical billiard 
phase spaces (at least for large velocities). A reasonable guess would be 
that this overlap also occurs in the nondegenerate cases of Fig. 12. 

Since the x axis and the y axis are diameters of the ellipses for every t, 
Douady's theorem (ref. 7, Chapter3, IV) may be applied, implying the 
boundedness of the velocities for the dynamics restricted to these diameters. 
Figures 14 and 15 show what happens for other initial conditions for the 
confocal motion with ao = 1.4 and bo = 1.0. Remark that the more irregular 
behavior occurs for initial conditions near the broken saddle connection, 
with a corresponding spreading of the velocities (Fig. 14). Figure 15 dis- 
plays the t x v diagram for initial conditions near the broken saddle con- 
nection for the same model and different initial velocities. 

Trying the other examples, we observed that the behavior of their t • v 
diagrams is very similar to that of the corresponding diagrams for the con- 
focal motion. So, we do not display them here. 

1o . . i ~ - : - ~ , . . , . . ~ _  ~ 1000 > < > <  

5OO 

~ . ~  ~ 100 
t t 

Fig. 15. Time evolution of the velocity. 
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